IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i12p3379-3391.html
   My bibliography  Save this article

Tumbling, stretching and cross-stream migration of polymers in rectilinear shear flow from dissipative particle dynamics simulations

Author

Listed:
  • Danioko, Sidy
  • Laradji, Mohamed

Abstract

Solutions of flexible polymer chains with harmonic bonds undergoing rectilinear flow in slit pores are investigated via dissipative particle dynamics (DPD) simulations. We found that when DPD with low Schmidt number (Sc∼1) is used, the polymer chains tend to migrate across the streamlines towards the walls. However, a cross-stream migration towards the centerline is observed when DPD with relatively high values of Schmidt number (Sc∼10) is used. The effect of chain length and Weissenberg number, defined as Wi=Γ̇τrel, where Γ̇ and τrel are the shear rate and polymer longest relaxation time, respectively, are investigated. The polymer chains exhibit a large number of orientational and extensional fluctuations, with the distributions of both latitude and azimuthal angles exhibiting power-law decays in agreement with experiments, theory and previous simulations. The polymer chains exhibit tumbling kinetics characterized by an exponential distribution of tumbling times. The characteristic time scale is proportional to the longest relaxation time of the polymer chains at equilibrium. The power spectral density of the extension, while monotonically decaying for large chain length or large Weissenberg number, exhibits a shallow peak for short chains, implying that shear flow induces nearly repetitive tumbling of the polymer chains. The time scale corresponding to the peak of the extension power spectral density is also proportional to the longest chain relaxation time.

Suggested Citation

  • Danioko, Sidy & Laradji, Mohamed, 2012. "Tumbling, stretching and cross-stream migration of polymers in rectilinear shear flow from dissipative particle dynamics simulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3379-3391.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:12:p:3379-3391
    DOI: 10.1016/j.physa.2012.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112001343
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:12:p:3379-3391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.