IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i10p2948-2956.html
   My bibliography  Save this article

The Bethe lattice treatment of sound attenuation for a spin- 3/2 Ising model

Author

Listed:
  • Cengiz, Tunç
  • Albayrak, Erhan

Abstract

The sound attenuation phenomena is investigated for a spin- 3/2 Ising model on the Bethe lattice in terms of the recursion relations by using the Onsager theory of irreversible thermodynamics. The dependencies of sound attenuation on the temperature (T), frequency (w), Onsager coefficient (γ) and external magnetic field (H) near the second-order (Tc) and first-order (Tt) phase transition temperatures are examined for given coordination numbers q on the Bethe lattice. It is assumed that the sound wave couples to the order-parameter fluctuations which decay mainly via the order-parameter relaxation process, thus two relaxation times are obtained and which are used to obtain an expression for the sound attenuation coefficient (α). Our investigations revealed that only one peak is obtained near Tt and three peaks are found near Tc when the Onsager coefficient is varied at a given constant frequency for q=3. Fixing the Onsager coefficient and varying the frequency always leads to two peaks for q=3,4 and 6 near Tc. The sound attenuation peaks are observed near Tt at lower values of external magnetic field, but as it increases the sound attenuation peaks decrease and eventually disappear.

Suggested Citation

  • Cengiz, Tunç & Albayrak, Erhan, 2012. "The Bethe lattice treatment of sound attenuation for a spin- 3/2 Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(10), pages 2948-2956.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:10:p:2948-2956
    DOI: 10.1016/j.physa.2012.01.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112000581
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.01.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:10:p:2948-2956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.