IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i4p741-748.html
   My bibliography  Save this article

Communities and dynamical processes in a complex software network

Author

Listed:
  • Moyano, Luis G.
  • Mouronte, Mary Luz
  • Vargas, Maria Luisa

Abstract

Complex technological networks represent a growing challenge to support and maintain as their number of elements become higher and their interdependencies more involved. On the other hand, for networks that grow in a decentralized manner, it is possible to observe certain patterns in their overall structure that may be taken into account for a more tractable analysis. An example of such a pattern is the spontaneous formation of communities or modules. An important question regarding the detection of communities is if these are really representative of any internal network feature. In this work, we explore the community structure of a real complex software network, and correlate this modularity information with the internal dynamical processes that the network is designed to support. Our results show that the dependence between community structure and internal dynamical processes is remarkable, supporting the fact that a community division of this complex network is helpful in the assessment of the underlying dynamical structure, and thus is a useful tool to achieve a simpler representation of the complexity of the network.

Suggested Citation

  • Moyano, Luis G. & Mouronte, Mary Luz & Vargas, Maria Luisa, 2011. "Communities and dynamical processes in a complex software network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 741-748.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:4:p:741-748
    DOI: 10.1016/j.physa.2010.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110008848
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Jialin & Chen, Duanbing, 2015. "A fast algorithm for community detection in temporal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 87-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:4:p:741-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.