IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i4p587-594.html
   My bibliography  Save this article

Nonadditive Tsallis entropy applied to the Earth’s climate

Author

Listed:
  • Gonzalez, J.L.
  • de Faria, E.L.
  • Albuquerque, Marcelo P.
  • Albuquerque, Marcio P.

Abstract

The concepts of nonextensive statistics, which has been applied in the study of complex systems, are used to analyze past records of the Earth’s climate. The fluctuations within the record of deuterium content (hence temperature) in the last glacial period appear to follow a q-Gaussian distribution. Analyses of the time-dependent nonadditive entropy indicate transitions between different complexity levels in the data prior to the abrupt change in the system dynamics at the end of the last glaciation. Different fluctuation regimens are evidenced through wavelets analysis. It is also suggested that time-dependent entropy analysis could be useful for indicating the approach to a critical transition of the Earth’s climate for which theoretical models are in many cases not available.

Suggested Citation

  • Gonzalez, J.L. & de Faria, E.L. & Albuquerque, Marcelo P. & Albuquerque, Marcio P., 2011. "Nonadditive Tsallis entropy applied to the Earth’s climate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 587-594.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:4:p:587-594
    DOI: 10.1016/j.physa.2010.10.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110009258
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.10.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoyos, Isabel & Rodríguez, Boris Anghelo, 2020. "Drawing the complexity of Colombian climate from non-extensive extreme behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    2. Campos, Diógenes, 2014. "Macroscopic characterization of data sets by using the average absolute deviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 222-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:4:p:587-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.