IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i3p492-498.html
   My bibliography  Save this article

The zipper effect: Why different positions along the chromosome suffer different selection pressures

Author

Listed:
  • de Oliveira, P.M.C.
  • Moss de Oliveira, S.

Abstract

Variability within diploid sexual populations comes from two ingredients: mutations and recombination (or crossing-over). On average, the first introduces genetic defects in offspring genomes, while the second is a mechanism which tends to eliminate them, continuously “cleaning” the population genetic pool from harmful mutations along the generations. Here, we propose that loci near the chromosome tips are more effectively cleaned by the recombination mechanism than loci near the chromosome centre. This result implies that clusters of neighbouring, orchestrated-functioning genes, supposed to be more robust against the effects of genetic mutations, are more likely found near the chromosome centres, while isolated genes are more likely found near the tips. We confirm the tip–centre asymmetry through a simple computer agent-based model. In order to test this effect in reality, we also analyse as an example the particular case of HOX genes distributed along the 24 human chromosomes and verify that indeed, most HOX genes belong to such clustered networks located near the chromosome centres. Accordingly, isolated HOX genes are located closer to the tips.

Suggested Citation

  • de Oliveira, P.M.C. & Moss de Oliveira, S., 2011. "The zipper effect: Why different positions along the chromosome suffer different selection pressures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 492-498.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:3:p:492-498
    DOI: 10.1016/j.physa.2010.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711000868X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Evolution; Crossing-over;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:3:p:492-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.