IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i23p4486-4493.html
   My bibliography  Save this article

Negative ratings play a positive role in information filtering

Author

Listed:
  • Zeng, Wei
  • Zhu, Yu-Xiao
  • Lü, Linyuan
  • Zhou, Tao

Abstract

The explosive growth of information asks for advanced information filtering techniques to solve the so-called information overload problem. A promising way is the recommender system which analyzes the historical records of users’ activities and accordingly provides personalized recommendations. Most recommender systems can be represented by user-object bipartite networks where users can evaluate and vote for objects, and ratings such as “dislike” and “I hate it” are treated straightforwardly as negative factors or are completely ignored in traditional approaches. Applying a local diffusion algorithm on three benchmark data sets, MovieLens, Netflix and Amazon, our study arrives at a very surprising result, namely the negative ratings may play a positive role especially for very sparse data sets. In-depth analysis at the microscopic level indicates that the negative ratings from less active users to less popular objects could probably have positive impacts on the recommendations, while the ones connecting active users and popular objects mostly should be treated negatively. We finally outline the significant relevance of our results to the two long-term challenges in information filtering: the sparsity problem and the cold-start problem.

Suggested Citation

  • Zeng, Wei & Zhu, Yu-Xiao & Lü, Linyuan & Zhou, Tao, 2011. "Negative ratings play a positive role in information filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4486-4493.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4486-4493
    DOI: 10.1016/j.physa.2011.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111005310
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Bingrui & Li, Lingling & Jiao, Licheng & Gong, Maoguo & Cai, Qing & Wu, Yue, 2015. "NNIA-RS: A multi-objective optimization based recommender system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 383-397.
    2. Hu, Liang & Ren, Liang & Lin, Wenbin, 2018. "A reconsideration of negative ratings for network-based recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 690-701.
    3. Gu, Ke & Fan, Ying & Di, Zengru, 2020. "How to predict recommendation lists that users do not like," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Ramezani, Mohsen & Moradi, Parham & Akhlaghian, Fardin, 2014. "A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 72-84.
    5. Ramezani, Mohsen & Yaghmaee, Farzin, 2016. "A novel video recommendation system based on efficient retrieval of human actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 607-623.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4486-4493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.