IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i23p4192-4197.html
   My bibliography  Save this article

Model for domain wall avalanches in ferromagnetic thin films

Author

Listed:
  • Buceta, R.C.
  • Muraca, D.

Abstract

The Barkhausen jumps or avalanches in magnetic domain-walls motion between successive pinned configurations, due the competition among magnetic external driving force and substrum quenched disorder, appear in bulk materials and thin films. We introduce a model based in rules for the domain wall evolution of ferromagnetic media with exchange or short-range interactions, that include disorder and driving force effects. We simulate in 2-dimensions with Monte Carlo dynamics, calculate numerically distributions of sizes and durations of the jumps and find power-law critical behavior. The avalanche-size exponent is in excellent agreement with experimental results for thin films and is close to predictions of the other models, such as like random-field and random-bond disorder, or functional renormalization group. The model allows us to review current issues in the study of avalanches motion of the magnetic domain walls in thin films with ferromagnetic interactions and opens a new approach to describe these materials with dipolar or long-range interactions.

Suggested Citation

  • Buceta, R.C. & Muraca, D., 2011. "Model for domain wall avalanches in ferromagnetic thin films," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4192-4197.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4192-4197
    DOI: 10.1016/j.physa.2011.06.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111005188
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.06.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4192-4197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.