IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i23p4174-4183.html
   My bibliography  Save this article

Dynamic Monte Carlo simulation of the NO+H2 reaction on Pt(100): TPR spectra

Author

Listed:
  • Álvarez-Falcón, L.
  • Alas, S.J.
  • Vicente, L.

Abstract

The catalytic reduction of nitric oxide by hydrogen over a Pt surface is studied using a dynamic Monte Carlo (MC) method on a square lattice under low pressure conditions. Using a Langmuir–Hinshelwood reaction mechanism, a simplified model with only four adsorbed species (NO, H, O, and N) is constructed. The effect on the NO dissociation rate, the limiting step in the whole reaction, is inhibited by co-adsorbed NO and H2 molecules and is enhanced both by the presence of empty sites and adsorbed N atoms at nearest neighbors. In these simulations, several experimental parameter values are included, such as: adsorption, desorption and diffusion of the reactants. The phenomenon is studied while varying the temperature over the 300–550 K range. The model reproduces well-observed TPD and TPR experimental results. For the whole NO+H2 reaction, the phenomena of “surface explosion” is observed and can be explained as the result of the abrupt production of N2 due to both the autocatalytic NO decomposition favored by the presence of vacant sites and the development of inhomogeneous fluctuations. MA simulations also allow a visualization of the spatial development of the surface explosion as heating proceeds.

Suggested Citation

  • Álvarez-Falcón, L. & Alas, S.J. & Vicente, L., 2011. "Dynamic Monte Carlo simulation of the NO+H2 reaction on Pt(100): TPR spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4174-4183.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4174-4183
    DOI: 10.1016/j.physa.2011.06.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111004985
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.06.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4174-4183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.