IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i17p3002-3019.html
   My bibliography  Save this article

Low-temperature phases obtained by linear programming: An application to a lattice system of model chiral molecules

Author

Listed:
  • Medved’, Igor
  • Trník, Anton
  • Huckaby, Dale A.

Abstract

A convenient, Peierls-type approach to obtain low-temperature phases is to use the method of an m-potential. In this paper we show that, for more complex systems where it may be rather difficult to rewrite the Hamiltonian as an m-potential and whose configurations are subject to linear constraints, the verification of the Peierls condition can be reformulated as a linear programming problem. Before introducing this novel strategy for a general lattice system, we compare it with the m-potential method for a specific model molecular system consisting of an equimolar mixture of a chiral molecule and its non-superimposable mirror image that occupy all the sites of a honeycomb lattice. In one range of interactions, we prove that a racemic low-temperature phase occurs (containing equal numbers of each enantiomer). However, in a neighboring range of interactions, we show that a homochiral low-temperature phase (containing a single enantiomer) exists, and thus chiral segregation occurs in the system. Our linear programming technique yields these results in wider ranges of interactions than the m-potential method.

Suggested Citation

  • Medved’, Igor & Trník, Anton & Huckaby, Dale A., 2011. "Low-temperature phases obtained by linear programming: An application to a lattice system of model chiral molecules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3002-3019.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:17:p:3002-3019
    DOI: 10.1016/j.physa.2011.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111002779
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:17:p:3002-3019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.