IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i16p2904-2908.html
   My bibliography  Save this article

A Nuclear Magnetic Resonance study of the reversible denaturation of hydrated lysozyme

Author

Listed:
  • Corsaro, Carmelo
  • Mallamace, Domenico

Abstract

The understanding of the physical processes that occur below the threshold of protein thermal denaturation is of fundamental importance. In this thermal region proteins undergo a reversible folding/unfolding process whose evolution depends upon temperature and time. When the kinetics of the folding is altered, the specific biological activity of the protein is altered as well and aggregation phenomena usually intervene. The most important role in driving these processes is played by the solvent and water is certainly the solvent par excellence. It is well known that proteins become biologically active with no less than a water monolayer covering their surface. The knowledge of the physical properties of this monolayer is of basic importance to prevent folding alterations. We present a proton Nuclear Magnetic Resonance study at very high resolution of the thermodynamic properties of lysozyme hydration water as a function of temperature and time in the thermal region of the reversible denaturation.

Suggested Citation

  • Corsaro, Carmelo & Mallamace, Domenico, 2011. "A Nuclear Magnetic Resonance study of the reversible denaturation of hydrated lysozyme," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2904-2908.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:16:p:2904-2908
    DOI: 10.1016/j.physa.2011.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111002718
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:16:p:2904-2908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.