IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i16p2863-2879.html
   My bibliography  Save this article

Relaxation time distributions for an anomalously diffusing particle

Author

Listed:
  • Pottier, Noëlle

Abstract

As well known, the generalized Langevin equation with a memory kernel decreasing at large times as an inverse power law of time describes the motion of an anomalously diffusing particle. Here, we focus attention on some new aspects of the dynamics, successively considering the memory kernel, the particle’s mean velocity, and the scattering function. All these quantities are studied from a unique angle, namely, the discussion of the possible existence of a distribution of relaxation times characterizing their time decay. Although a very popular concept, a relaxation time distribution cannot be associated with any time-decreasing quantity (from a mathematical point of view, the decay has to be described by a completely monotonic function).

Suggested Citation

  • Pottier, Noëlle, 2011. "Relaxation time distributions for an anomalously diffusing particle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2863-2879.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:16:p:2863-2879
    DOI: 10.1016/j.physa.2011.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111002421
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:16:p:2863-2879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.