IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i11p2160-2171.html
   My bibliography  Save this article

Density-based shrinkage for revealing hierarchical and overlapping community structure in networks

Author

Listed:
  • Huang, Jianbin
  • Sun, Heli
  • Han, Jiawei
  • Feng, Boqin

Abstract

The investigation of community structure in networks is an important issue in many disciplines, which still remains a challenging task. First, complex networks often show a hierarchical structure with communities embedded within other communities. Moreover, communities in the network may overlap and have noise, e.g., some nodes belonging to multiple communities and some nodes marginally connected with the communities, which are called hub and outlier, respectively. Therefore, a good algorithm is desirable to be able to not only detect hierarchical communities, but also to identify hubs and outliers. In this paper, we propose a parameter-free hierarchical network clustering algorithm DenShrink. By combining the advantages of density-based clustering and modularity optimization methods, our algorithm can reveal the embedded hierarchical community structure efficiently in large-scale weighted undirected networks, and identify hubs and outliers as well. Moreover, it overcomes the resolution limit possessed by other modularity-based methods. Our experiments on the real-world and synthetic datasets show that DenShrink generates more accurate results than the baseline methods.

Suggested Citation

  • Huang, Jianbin & Sun, Heli & Han, Jiawei & Feng, Boqin, 2011. "Density-based shrinkage for revealing hierarchical and overlapping community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2160-2171.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:11:p:2160-2171
    DOI: 10.1016/j.physa.2010.10.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110009192
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.10.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Zhou, Kuang & Martin, Arnaud & Pan, Quan, 2015. "A similarity-based community detection method with multiple prototype representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 519-531.
    3. Héctor Muñoz & Eloy Vicente & Ignacio González & Alfonso Mateos & Antonio Jiménez-Martín, 2021. "ConvGraph: Community Detection of Homogeneous Relationships in Weighted Graphs," Mathematics, MDPI, vol. 9(4), pages 1-18, February.
    4. Mu, Caihong & Liu, Yong & Liu, Yi & Wu, Jianshe & Jiao, Licheng, 2014. "Two-stage algorithm using influence coefficient for detecting the hierarchical, non-overlapping and overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 47-61.
    5. Wu, Jianshe & Li, Xiaoxiao & Jiao, Licheng & Wang, Xiaohua & Sun, Bo, 2013. "Minimum spanning trees for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2265-2277.
    6. Wu, Jianshe & Hou, Yunting & Jiao, Yang & Li, Yong & Li, Xiaoxiao & Jiao, Licheng, 2015. "Density shrinking algorithm for community detection with path based similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 218-228.
    7. Gong, Maoguo & Liu, Jie & Ma, Lijia & Cai, Qing & Jiao, Licheng, 2014. "Novel heuristic density-based method for community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 71-84.
    8. Ding, Jingyi & Jiao, Licheng & Wu, Jianshe & Hou, Yunting & Qi, Yutao, 2015. "Prediction of missing links based on multi-resolution community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 76-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:11:p:2160-2171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.