IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i6p1024-1030.html
   My bibliography  Save this article

Stochastic optimization of spin-glasses on cellular neural/nonlinear network based processors

Author

Listed:
  • Ercsey-Ravasz, M.
  • Roska, T.
  • Néda, Z.

Abstract

Nowadays, Cellular Neural/Nonlinear Networks (CNN) are practically implemented in parallel, analog computers, showing a fast developing trend. It is important also for physicists to be aware that such computers are appropriate for implementing in an elegant manner practically important algorithms, which are extremely slow on the classical digital architecture. Here, CNN is used for optimization of spin-glass systems. We prove, that a CNN in which the parameters of all cells can be separately controlled, is the analog correspondent of a two-dimensional Ising type spin-glass system. Using the properties of CNN we show that one single operation on the CNN chip would yield a local minimum of the spin-glass energy function. By using this property a fast optimization method, similar to simulated annealing, can be built. After estimating the simulation time needed for this algorithm on CNN based computers, and comparing it with the time needed on normal digital computers using the classical simulated annealing algorithm, the results look promising: a speed-up of the order 1012 is expected already at 50×50 lattice sizes. Hardwares realized nowadays are of 128×128 size. Also, there seem to be no technical difficulties adapting CNN chips for such problems and the needed local control of the parameters could be fully developed in the near future.

Suggested Citation

  • Ercsey-Ravasz, M. & Roska, T. & Néda, Z., 2009. "Stochastic optimization of spin-glasses on cellular neural/nonlinear network based processors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 1024-1030.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:6:p:1024-1030
    DOI: 10.1016/j.physa.2008.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108009825
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:6:p:1024-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.