IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i5p755-763.html
   My bibliography  Save this article

Effects of epidemic threshold definition on disease spread statistics

Author

Listed:
  • Lagorio, C.
  • Migueles, M.V.
  • Braunstein, L.A.
  • López, E.
  • Macri, P.A.

Abstract

We study the statistical properties of SIR epidemics in random networks, when an epidemic is defined as only those SIR propagations that reach or exceed a minimum size sc. Using percolation theory to calculate the average fractional size 〈MSIR〉 of an epidemic, we find that the strength of the spanning link percolation cluster P∞ is an upper bound to 〈MSIR〉. For small values of sc, P∞ is no longer a good approximation, and the average fractional size has to be computed directly. We find that the choice of sc is generally (but not always) guided by the network structure and the value ofT of the disease in question. If the goal is to always obtain P∞ as the average epidemic size, one should choose sc to be the typical size of the largest percolation cluster at the critical percolation threshold for the transmissibility. We also study Q, the probability that an SIR propagation reaches the epidemic mass sc, and find that it is well characterized by percolation theory. We apply our results to real networks (DIMES and Tracerouter) to measure the consequences of the choice sc on predictions of average outcome sizes of computer failure epidemics.

Suggested Citation

  • Lagorio, C. & Migueles, M.V. & Braunstein, L.A. & López, E. & Macri, P.A., 2009. "Effects of epidemic threshold definition on disease spread statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 755-763.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:5:p:755-763
    DOI: 10.1016/j.physa.2008.10.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108008984
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.10.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xingyuan & Zhao, Tianfang & Qin, Xiaomeng, 2016. "Model of epidemic control based on quarantine and message delivery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 168-178.
    2. Serge Galam & Marco Alberto Javarone, 2016. "Modeling Radicalization Phenomena in Heterogeneous Populations," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.

    More about this item

    Keywords

    Epidemic spread on networks; Percolation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:5:p:755-763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.