IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i5p727-731.html
   My bibliography  Save this article

The principle that generates dissimilar patterns inside aggregates of organisms

Author

Listed:
  • Miguel, Antonio F.
  • Bejan, Adrian

Abstract

Pattern formation and self-organization are phenomena that occur across the board, in animate and inanimate systems. In this paper, we rely on the constructal law to explain the generation of patterns (shapes, structures) in aggregates of organisms–pedestrian crowds and stony corals. In pedestrian crowds a variety of patterns are often observed, from ‘chaotic’ appearances to spontaneous organization in lanes of uniform walking direction. Stony corals and other organisms also present intraspecific variability in shape. We show that flow systems develop in time patterns which provide easier access to the nutrients and space, within a set of constraints imposed by each situation. Flow systems have the freedom to morph their shape in search for architectures that allows them to have greater access to the space that they inhabit. We identify the mechanisms allowing pedestrians to evolve in space and time. We also show that stony corals may develop branched or spherical shapes, depending on which shape performs best in response to the environmental conditions. The constructal law allows systems with complex internal flows to be described and understood for a unified view.

Suggested Citation

  • Miguel, Antonio F. & Bejan, Adrian, 2009. "The principle that generates dissimilar patterns inside aggregates of organisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 727-731.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:5:p:727-731
    DOI: 10.1016/j.physa.2008.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108009606
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lui, C.H. & Fong, N.K. & Lorente, S. & Bejan, A. & Chow, W.K., 2015. "Constructal design of evacuation from a three-dimensional living space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 47-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:5:p:727-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.