IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i4p332-342.html
   My bibliography  Save this article

A decomposed equation for local entropy and entropy production in volume-preserving coarse-grained systems

Author

Listed:
  • Ishida, Hideshi

Abstract

In this study an equation for the local entropy is derived based on the formulation of a master equation and is applied to volume-preserving maps. The equation consists of the following terms: unsteady, convection, diffusion, probability-weighted phase space volume expansion rate, nonnegative entropy production, and residuals. The decomposition makes it possible to evaluate entropy production in terms of microscopic dynamics and is expected to be applicable to many coarse-grained systems on the phase space. When it is applied to two volume-preserving multibaker chain systems it is confirmed that the summation of the nonnegative entropy production on each site numerically coincides with the entropy production introduced by Gilbert et al. [T. Gilbert, J.R. Dorfman, P. Gaspard, Entropy production, fractals, and relaxation to equilibrium, Phys. Rev. Lett. 85 (2000) 1606–1609] and the phenomenological expression both in nonequilibrium steady and unsteady states. The coincidence is brought about by the fact that the residual terms vanish in the thermodynamic limit when they are integrated on each site. It follows that the entropy production is dominated by the nonnegative entropy production term and becomes positive in nonequilibrium states.

Suggested Citation

  • Ishida, Hideshi, 2009. "A decomposed equation for local entropy and entropy production in volume-preserving coarse-grained systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 332-342.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:4:p:332-342
    DOI: 10.1016/j.physa.2008.10.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108009035
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.10.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:4:p:332-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.