IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i2p233-239.html
   My bibliography  Save this article

A mechanism to synchronize fluctuations in scale free networks using growth models

Author

Listed:
  • La Rocca, C.E.
  • Pastore y Piontti, A.L.
  • Braunstein, L.A.
  • Macri, P.A.

Abstract

In this paper, we study the steady state of the fluctuations of the surface for a model of surface growth with relaxation to any of its lower nearest neighbors (SRAM) [F. Family, J. Phys. A 19, (1986) L441] in scale free networks. It is known that for Euclidean lattices this model belongs to the same universality class as the model of surface relaxation to the minimum (SRM). For the SRM model, it was found that for scale free networks with broadness λ, the steady state of the fluctuations scales with the system size N as a constant for λ≥3 and has a logarithmic divergence for λ<3 [A.L. Pastore y Piontti, P.A. Macri, L.A. Braunstein, Phys. Rev. E 76 (2007) 046117]. It was also shown [C.E. La Rocca, L.A. Braunstein, P.A. Macri, Phys. Rev. E 77 (2008) 046120] that this logarithmic divergence is due to non-linear terms that arises from the topology of the network. In this paper, we show that the fluctuations for the SRAM model scale as in the SRM model. We also derive analytically the evolution equation for this model for any kind of complex graphs and find that, as in the SRM model, non-linear terms appear due to the heterogeneity and the lack of symmetry of the network. In spite of that, the two models have the same scaling, but the SRM model is more efficient to synchronize systems.

Suggested Citation

  • La Rocca, C.E. & Pastore y Piontti, A.L. & Braunstein, L.A. & Macri, P.A., 2009. "A mechanism to synchronize fluctuations in scale free networks using growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 233-239.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:2:p:233-239
    DOI: 10.1016/j.physa.2008.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108008388
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:2:p:233-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.