IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i24p5045-5056.html
   My bibliography  Save this article

Adjusting from disjoint to overlapping community detection of complex networks

Author

Listed:
  • Wang, Xiaohua
  • Jiao, Licheng
  • Wu, Jianshe

Abstract

The investigation of community structures is one of the most important problems in the field of complex networks and has countless applications in different disciplines: biology, computer, social sciences, etc. Many community detection algorithms have been developed in various fields recently. The vast majority of these algorithms only find disjoint communities; however, in many real-world networks communities often overlap to some extent. In this paper, we propose an efficient method for adjusting these classical algorithms to match the requirement for discovering overlapping communities in complex networks, which is based on a local definition of community strength. The method can in principle be applied with any clustering algorithm. Tests on a set of computer generated and real-world networks give excellent results. In particular, we show that the method can also allow one to availably analyze the problem of unstable nodes in community detection, which is very helpful for understanding the structural properties of the networks correctly and comprehensively.

Suggested Citation

  • Wang, Xiaohua & Jiao, Licheng & Wu, Jianshe, 2009. "Adjusting from disjoint to overlapping community detection of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(24), pages 5045-5056.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:24:p:5045-5056
    DOI: 10.1016/j.physa.2009.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109006797
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Ronghua & Bai, Jing & Jiao, Licheng & Jin, Chao, 2013. "Community detection based on modularity and an improved genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1215-1231.
    2. Mu, Caihong & Liu, Yong & Liu, Yi & Wu, Jianshe & Jiao, Licheng, 2014. "Two-stage algorithm using influence coefficient for detecting the hierarchical, non-overlapping and overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 47-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:24:p:5045-5056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.