IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i23p4872-4886.html
   My bibliography  Save this article

Signal-to-noise analysis of Hopfield neural networks with a formulation of the dynamics in terms of transition probabilities

Author

Listed:
  • Reynaga, F.

Abstract

We study Hopfield neural networks with infinite connectivity using signal-to-noise analysis with a formulation of the dynamics in terms of transition probabilities. We focus our study on models where the strongest effects of the feedback correlations appear. We introduce an analysis of the path probability of one neuron in order to obtain the contribution of all feedback correlations to the dynamics of this neuron. In this way, we obtain a complete theory for dynamics with order parameter equations identical to those obtained with general functional analysis for finite temperature. In the first part of this work, we present our method in the fully connected Little-Hopfield neural network. We obtain, in a simple and direct way, the order parameter equations found by general functional analysis. In the second part, the exposed method is applied to the fully connected Ashkin-Teller neural network. It is shown that the retrieval quality is improved by introducing four-spin couplings. Simulation results support our theoretical predictions.

Suggested Citation

  • Reynaga, F., 2009. "Signal-to-noise analysis of Hopfield neural networks with a formulation of the dynamics in terms of transition probabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4872-4886.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:23:p:4872-4886
    DOI: 10.1016/j.physa.2009.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710900613X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:23:p:4872-4886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.