IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i1p41-50.html
   My bibliography  Save this article

Generalized relative entropy in functional magnetic resonance imaging

Author

Listed:
  • Cabella, Brenno C.T.
  • Sturzbecher, Marcio J.
  • de Araujo, Draulio B.
  • Neves, Ubiraci P.C.

Abstract

The generalized Kullback–Leibler distance Dq (q is the Tsallis parameter) is shown to be an useful measure for analysis of functional magnetic resonance imaging (fMRI) data series. This generalized form of entropy is used to evaluate the “distance” between the probability functions p1 and p2 of the signal levels related to periods of stimulus and non-stimulus in event-related fMRI experiments. The probability densities of the mean distance D̄q (averaged over the N epochs of the entire experiment) are obtained through numerical simulations for different values of signal-to-noise ratio (SNR) and found to be fitted very well by Gamma distributions (χ2<0.0008) for small values of N (N<30). These distributions allow us to determine the sensitivity and specificity of the method by construction of the receiver operating characteristic (ROC) curves. The performance of the method is also investigated in terms of the parameters q and L (number of signal levels) and our results indicate that the optimum choice is q=0.8 and L=3. The entropic index q is found to exert control on both sensitivity and specificity of the method. As q (q>0) is raised, sensitivity increases but specificity decreases. Finally, the method is applied in the analysis of a real event-related fMRI motor stimulus experiment and the resulting maps show activation in primary and secondary motor brain areas.

Suggested Citation

  • Cabella, Brenno C.T. & Sturzbecher, Marcio J. & de Araujo, Draulio B. & Neves, Ubiraci P.C., 2009. "Generalized relative entropy in functional magnetic resonance imaging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(1), pages 41-50.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:1:p:41-50
    DOI: 10.1016/j.physa.2008.09.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108008224
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.09.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, Luiz Eduardo Virgilio & Cabella, Brenno Caetano Troca & Neves, Ubiraci Pereira da Costa & Murta Junior, Luiz Otavio, 2015. "Multiscale entropy-based methods for heart rate variability complexity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 143-152.
    2. Marijke Welvaert & Yves Rosseel, 2013. "On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-10, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:1:p:41-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.