IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i19p4248-4258.html
   My bibliography  Save this article

A spatial weighted network model based on optimal expected traffic

Author

Listed:
  • Qian, Jiang-Hai
  • Han, Ding-Ding

Abstract

We propose a spatial weighted network model based on the optimal expected traffic. The expected traffic represents the prediction of the flow created by two vertices and is calculated by the improved gravity equation. The model maximizes the total expected traffic of the network. By changing two parameters which control the fitness and the geographical constraints, the model can vary its topology and give rise to a variety of statistical properties observed in the real-world network. Notably, our study shows that a linear and a nonlinear strength–degree correlation can emerge when considering and neglecting the “transport effect”, respectively.

Suggested Citation

  • Qian, Jiang-Hai & Han, Ding-Ding, 2009. "A spatial weighted network model based on optimal expected traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4248-4258.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:19:p:4248-4258
    DOI: 10.1016/j.physa.2009.05.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109004130
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.05.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yaping & Peng, Ting & Fu, Chuanyun & Cheng, Shaowu, 2016. "Simulation analysis of factors affecting air route connection in China," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 12-20.
    2. Sean Wilkinson & Sarah Dunn & Shu Ma, 2012. "The vulnerability of the European air traffic network to spatial hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1027-1036, February.
    3. Maniadakis, Dimitris & Varoutas, Dimitris, 2014. "Network congestion analysis of gravity generated models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 114-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:19:p:4248-4258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.