IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i19p4091-4096.html
   My bibliography  Save this article

Estimation of zeta potentials of titania nanoparticles by molecular simulation

Author

Listed:
  • English, Niall J.
  • Long, William F.

Abstract

Non-equilibrium molecular dynamics (NEMD) simulations have been performed for static electric fields for a range of positively charged spherical rutile–titania nanoparticles with radii of 1.5 to 2.9 nm for two different salt concentrations in water, in order to simulate electrophoresis directly. Using the observed limiting drag velocities, Helmholtz–Smoluchowski (HS) theory was used to estimate their ζ potentials. These estimates were compared to values from numerical solution of the non-linear Poisson–Boltzmann (PB) equation for representative configurations of the nanoparticles, in addition to idealised analytic and Debye–Hückel (DH) solutions about spherical particles of the same geometry and charge state, for the given salt concentrations. It was found that reasonable agreement was obtained between the various approaches, with the NEMD-HS results some 15%–15% smaller than the numerical PB results for more highly charged nanoparticles.

Suggested Citation

  • English, Niall J. & Long, William F., 2009. "Estimation of zeta potentials of titania nanoparticles by molecular simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4091-4096.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:19:p:4091-4096
    DOI: 10.1016/j.physa.2009.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109004786
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:19:p:4091-4096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.