IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i19p4045-4060.html
   My bibliography  Save this article

The q-gamma and (q,q)-polygamma functions of Tsallis statistics

Author

Listed:
  • Niven, Robert K.
  • Suyari, Hiroki

Abstract

An axiomatic definition is given for the q-gamma function Γq(x),q∈R,q>0,x∈R of Tsallis (non-extensive) statistical physics, the continuous analogue of the q-factorial of Suyari [H. Suyari, Physica A 368 (1) (2006) 63], and the q-analogue of the gamma function Γ(x) of Euler and Gauss. A working definition in closed form, based on the Hurwitz and Riemann zeta functions (including their analytic continuations), is shown to satisfy this definition. Several relations involving the q-gamma and other functions are obtained. The (q,q)-polygamma functions ψq,q(m)(x),m∈N, defined by successive derivatives of lnqΓq(x), where lnqa=(1−q)−1(a1−q−1),a>0 is the q-logarithmic function, are also reported. The new functions are used to calculate the inferred probabilities and multipliers for Tsallis systems with finite numbers of particles N≪∞.

Suggested Citation

  • Niven, Robert K. & Suyari, Hiroki, 2009. "The q-gamma and (q,q)-polygamma functions of Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4045-4060.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:19:p:4045-4060
    DOI: 10.1016/j.physa.2009.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109004452
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:19:p:4045-4060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.