IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i7p1504-1528.html
   My bibliography  Save this article

Hamiltonian and Brownian systems with long-range interactions: IV. General kinetic equations from the quasilinear theory

Author

Listed:
  • Chavanis, Pierre-Henri

Abstract

We develop the kinetic theory of Hamiltonian systems with weak long-range interactions. Starting from the Klimontovich equation and using a quasilinear theory, we obtain a general kinetic equation that can be applied to spatially inhomogeneous systems and that takes into account memory effects. This equation is valid at order 1/N in a proper thermodynamic limit and it coincides with the kinetic equation obtained from the BBGKY hierarchy. For N→+∞, it reduces to the Vlasov equation governing collisionless systems. We describe the process of phase mixing and violent relaxation leading to the formation of a quasistationary state (QSS) on the coarse-grained scale. We interpret the physical nature of the QSS in relation to Lynden-Bell’s statistical theory and discuss the problem of incomplete relaxation. In the second part of the paper, we consider the relaxation of a test particle in a thermal bath. We derive a Fokker–Planck equation by directly calculating the diffusion tensor and the friction force from the Klimontovich equation. We give general expressions of these quantities that are valid for possibly spatially inhomogeneous systems with long correlation time. We show that the diffusion and friction terms have a very similar structure given by a sort of generalized Kubo formula. We also obtain non-Markovian kinetic equations that can be relevant when the auto-correlation function of the force decreases slowly with time. An interesting factor in our approach is the development of a formalism that remains in physical space (instead of Fourier space) and that can deal with spatially inhomogeneous systems.

Suggested Citation

  • Chavanis, Pierre-Henri, 2008. "Hamiltonian and Brownian systems with long-range interactions: IV. General kinetic equations from the quasilinear theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1504-1528.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:7:p:1504-1528
    DOI: 10.1016/j.physa.2007.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107011223
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Long-range interactions; Kinetic theory;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:7:p:1504-1528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.