IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i27p6876-6894.html
   My bibliography  Save this article

Can chaotic quantum energy levels statistics be characterized using information geometry and inference methods?

Author

Listed:
  • Cafaro, C.
  • Ali, S.A.

Abstract

In this paper, we review our novel information-geometrodynamical approach to chaos (IGAC) on curved statistical manifolds and we emphasize the usefulness of our information-geometrodynamical entropy (IGE) as an indicator of chaoticity in a simple application. Furthermore, knowing that integrable and chaotic quantum antiferromagnetic Ising chains are characterized by asymptotic logarithmic and linear growths of their operator space entanglement entropies, respectively, we apply our IGAC to present an alternative characterization of such systems. Remarkably, we show that in the former case the IGE exhibits asymptotic logarithmic growth while in the latter case the IGE exhibits asymptotic linear growth.

Suggested Citation

  • Cafaro, C. & Ali, S.A., 2008. "Can chaotic quantum energy levels statistics be characterized using information geometry and inference methods?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6876-6894.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:27:p:6876-6894
    DOI: 10.1016/j.physa.2008.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108007875
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cafaro, Carlo & Mancini, Stefano, 2012. "On Grover’s search algorithm from a quantum information geometry viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1610-1625.
    2. Ali, S.A. & Cafaro, C. & Kim, D.-H. & Mancini, S., 2010. "The effect of microscopic correlations on the information geometric complexity of Gaussian statistical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3117-3127.
    3. Giffin, Adom & Cafaro, Carlo & Ali, Sean Alan, 2016. "Application of the maximum relative entropy method to the physics of ferromagnetic materials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 11-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:27:p:6876-6894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.