IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i27p6759-6770.html
   My bibliography  Save this article

Using relative entropy to find optimal approximations: An application to simple fluids

Author

Listed:
  • Tseng, Chih-Yuan
  • Caticha, Ariel

Abstract

We develop a maximum relative entropy formalism to generate optimal approximations to probability distributions. The central results consist of (a) justifying the use of relative entropy as the uniquely natural criterion to select a preferred approximation from within a family of trial parameterized distributions, and (b) to obtain the optimal approximation by marginalizing over parameters using the method of maximum entropy and information geometry. As an illustration we apply our method to simple fluids. The “exact” canonical distribution is approximated by that of a fluid of hard spheres. The proposed method first determines the preferred value of the hard-sphere diameter, and then obtains an optimal hard-sphere approximation by a suitably weighed average over different hard-sphere diameters. This leads to a considerable improvement in accounting for the soft-core nature of the interatomic potential. As a numerical demonstration, the radial distribution function and the equation of state for a Lennard-Jones fluid (argon) are compared with results from molecular dynamics simulations.

Suggested Citation

  • Tseng, Chih-Yuan & Caticha, Ariel, 2008. "Using relative entropy to find optimal approximations: An application to simple fluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6759-6770.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:27:p:6759-6770
    DOI: 10.1016/j.physa.2008.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108007553
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giffin, Adom & Cafaro, Carlo & Ali, Sean Alan, 2016. "Application of the maximum relative entropy method to the physics of ferromagnetic materials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 11-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:27:p:6759-6770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.