IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i18p4615-4622.html
   My bibliography  Save this article

Enantioseparation on a chiral nanostructured surface: Effect of molecular shape

Author

Listed:
  • Szabelski, Paweł

Abstract

In this paper we use the Monte Carlo simulation method to study adsorption of chiral molecules on a solid surface with periodic distribution of active sites. Namely, equilibrium adsorption of a racemic mixture of enantiomers represented by homonuclear tetramers is modeled on a square lattice with a chiral pattern of active sites. We consider two possible chiral structures of the tetramers which differ only by chain geometry but have equal adsorption energies. The effect of the chain geometry on the effectiveness of separation is assessed by comparing the corresponding adsorption selectivities obtained from the simulations. We present results of model calculations in which the parameters do not refer to any particular experimental system. These results indicate that the model chiral surface can, in general, adsorb preferentially the complementary enantiomer, regardless of its chain conformation. Specifically, it was shown that changes in the tetramer geometry, from S-shaped to Γ-shaped, lead to marginal changes in the shape of both single component and mixed adsorption isotherms calculated for the enantioselective surface. In this context, the enantiomer separation on the surface proposed in this work was shown to be insensitive to molecular shape of the adsorbing species.

Suggested Citation

  • Szabelski, Paweł, 2008. "Enantioseparation on a chiral nanostructured surface: Effect of molecular shape," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4615-4622.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:18:p:4615-4622
    DOI: 10.1016/j.physa.2008.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108003427
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:18:p:4615-4622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.