IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i16p4033-4052.html
   My bibliography  Save this article

Jeans type analysis of chemotactic collapse

Author

Listed:
  • Chavanis, Pierre-Henri
  • Sire, Clément

Abstract

We perform a linear dynamical stability analysis of a general hydrodynamic model of chemotactic aggregation [P.H. Chavanis, C. Sire, Physica A 384 (2007) 199]. Specifically, we study the stability of an infinite and homogeneous distribution of cells against “chemotactic collapse”. We discuss the analogy between the chemotactic collapse of biological populations and the gravitational collapse (Jeans instability) of self-gravitating systems. Our hydrodynamic model involves a pressure force which can take into account several effects like anomalous diffusion or the fact that the organisms cannot interpenetrate. We also take into account the degradation of the chemical which leads to a shielding of the interaction like for a Yukawa potential. Finally, our hydrodynamic model involves a friction force which quantifies the importance of inertial effects. In the strong friction limit, we obtain a generalized Keller–Segel model similar to the generalized Smoluchowski–Poisson system describing self-gravitating Langevin particles. For small frictions, we obtain a hydrodynamic model of chemotaxis similar to the Euler–Poisson system describing a self-gravitating barotropic gas. We show that an infinite and homogeneous distribution of cells is unstable against chemotactic collapse when the “velocity of sound” in the medium is smaller than a critical value. We study in detail the linear development of the instability and determine the range of unstable wavelengths, the growth rate of unstable modes and the damping rate, or the pulsation frequency, of the stable modes as a function of the friction parameter and shielding length. For specific equations of state, we express the stability criterion in terms of cell density.

Suggested Citation

  • Chavanis, Pierre-Henri & Sire, Clément, 2008. "Jeans type analysis of chemotactic collapse," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4033-4052.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:16:p:4033-4052
    DOI: 10.1016/j.physa.2008.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108001453
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed, Mahdisoltani & Ramin, Golestanian, 2023. "Nonequilibrium phenomena in driven and active Coulomb field theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 631(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:16:p:4033-4052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.