IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i14p3495-3502.html
   My bibliography  Save this article

Loop effects in the Ising spin glass on the Bethe-like lattices

Author

Listed:
  • Yokota, Terufumi

Abstract

Equations for the spin glass order in the Ising spin glass model on the Bethe-like lattices with and without small loops are studied. For each lattice, equations are obtained by using and not using the replica method. Within the replica symmetric approximation, equations obtained by the two ways are shown to be identical. To see the effects of the small loops and the replica symmetry breaking, a spin glass order parameter is investigated as a function of the connectivity of the lattices close to the transition temperature. Replica symmetry breaking is enhanced by the existence of small loops.

Suggested Citation

  • Yokota, Terufumi, 2008. "Loop effects in the Ising spin glass on the Bethe-like lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3495-3502.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:14:p:3495-3502
    DOI: 10.1016/j.physa.2008.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108002070
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jurčišinová, E. & Jurčišin, M., 2019. "Entropy properties of antiferromagnetic model on kagome lattice: Effective-field theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Jurčišinová, E. & Jurčišin, M., 2014. "The first order phase transitions in the multisite spin-1/2 model on a pure Husimi lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 375-385.
    3. Jurčišinová, E. & Jurčišin, M., 2019. "Applicability of effective field theory cluster approximations for investigation of geometrically frustrated magnetic systems: Antiferromagnetic model on kagome lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 644-657.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:14:p:3495-3502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.