IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i11p2584-2594.html
   My bibliography  Save this article

Modeling network traffic using generalized Cauchy process

Author

Listed:
  • Li, Ming
  • Lim, S.C.

Abstract

Processes with long-range dependence (LRD) have gained wide applications in many fields of science and technologies ranging from hydrology to network traffic. Two key properties of such processes are LRD that is characterized by the Hurst parameter H and self-similarity (SS) that is measured by the fractal dimension D. However, in the popular traffic model using fractional Gaussian noise (fGn), these two parameters are linearly related. This may be regarded as a limitation of fGn in traffic modeling from the point of view of either accurately fitting real traffic or appropriately explaining the particular multi-fractal phenomena of traffic. In this paper, we discuss recent results in traffic modeling from a view of the generalized Cauchy (GC) process. The GC process is indexed by two parameters D and H. The parameter D in the GC model is independent of H. Hence, it provides a more flexible way to describe the multi-fractal phenomena of traffic in addition to accurately modeling traffic for both short-term lags and long-term ones.

Suggested Citation

  • Li, Ming & Lim, S.C., 2008. "Modeling network traffic using generalized Cauchy process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2584-2594.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:11:p:2584-2594
    DOI: 10.1016/j.physa.2008.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108000423
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ming, 2017. "Record length requirement of long-range dependent teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 164-187.
    2. Li, Ming & Zhang, Peidong & Leng, Jianxing, 2016. "Improving autocorrelation regression for the Hurst parameter estimation of long-range dependent time series based on golden section search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 189-199.
    3. Li, Ming, 2020. "Multi-fractional generalized Cauchy process and its application to teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. Li, Ming & Wang, Anqi, 2020. "Fractal teletraffic delay bounds in computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    5. Li, Ming & Zhao, Wei, 2012. "Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6268-6278.
    6. Li, Ming & Li, Jia-Yue, 2017. "Generalized Cauchy model of sea level fluctuations with long-range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 309-335.
    7. Li, Ming, 2021. "Generalized fractional Gaussian noise and its application to traffic modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    8. Yimu Ji & Ye Wu & Dianchao Zhang & Yongge Yuan & Shangdong Liu & Roozbeh Zarei & Jing He, 2020. "A Novel Flash P2P Network Traffic Prediction Algorithm based on ELMD and Garch," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 127-141, March.
    9. Liudvikas Kaklauskas & Leonidas Sakalauskas, 2013. "Study of on-line measurement of traffic self-similarity," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 63-84, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:11:p:2584-2594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.