IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i10p2293-2305.html
   My bibliography  Save this article

Dynamic analysis of heartbeat rate signals of epileptics using multidimensional phase space reconstruction approach

Author

Listed:
  • Su, Zhi-Yuan
  • Wu, Tzuyin
  • Yang, Po-Hua
  • Wang, Yeng-Tseng

Abstract

The heartbeat rate signal provides an invaluable means of assessing the sympathetic–parasympathetic balance of the human autonomic nervous system and thus represents an ideal diagnostic mechanism for detecting a variety of disorders such as epilepsy, cardiac disease and so forth. The current study analyses the dynamics of the heartbeat rate signal of known epilepsy sufferers in order to obtain a detailed understanding of the heart rate pattern during a seizure event. In the proposed approach, the ECG signals are converted into heartbeat rate signals and the embedology theorem is then used to construct the corresponding multidimensional phase space. The dynamics of the heartbeat rate signal are then analyzed before, during and after an epileptic seizure by examining the maximum Lyapunov exponent and the correlation dimension of the attractors in the reconstructed phase space. In general, the results reveal that the heartbeat rate signal transits from an aperiodic, highly-complex behaviour before an epileptic seizure to a low dimensional chaotic motion during the seizure event. Following the seizure, the signal trajectories return to a highly-complex state, and the complex signal patterns associated with normal physiological conditions reappear.

Suggested Citation

  • Su, Zhi-Yuan & Wu, Tzuyin & Yang, Po-Hua & Wang, Yeng-Tseng, 2008. "Dynamic analysis of heartbeat rate signals of epileptics using multidimensional phase space reconstruction approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2293-2305.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:10:p:2293-2305
    DOI: 10.1016/j.physa.2007.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107013064
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaksic, Vesna & Mandic, Danilo P. & Karoumi, Raid & Basu, Bidroha & Pakrashi, Vikram, 2016. "Estimation of nonlinearities from pseudodynamic and dynamic responses of bridge structures using the Delay Vector Variance method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 100-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:10:p:2293-2305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.