IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v386y2007i1p135-154.html
   My bibliography  Save this article

A generalized thermodynamics for power-law statistics

Author

Listed:
  • Marino, Massimo

Abstract

We show that there exists a natural way to define a condition of generalized thermal equilibrium between systems governed by Tsallis thermostatistics, under the hypotheses that (i) the coupling between the systems is weak, (ii) the structure functions of the systems have a power-law dependence on the energy. It is found that the q values of two such systems at equilibrium must satisfy a relationship involving the respective numbers of degrees of freedom. The physical properties of a Tsallis distribution can be conveniently characterized by a new parameter η which can vary between 0 and +∞, these limits corresponding, respectively, to the two opposite situations of a microcanonical distribution and of a distribution with a predominant power-tail at high energies. We prove that the statistical expression of the thermodynamic functions is univocally determined by the requirements that (a) systems at thermal equilibrium have the same temperature, (b) the definitions of temperature and entropy are consistent with the second law of thermodynamics. We find that, for systems satisfying the hypotheses (i) and (ii) specified above, the thermodynamic entropy is given by Rényi entropy.

Suggested Citation

  • Marino, Massimo, 2007. "A generalized thermodynamics for power-law statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 135-154.
  • Handle: RePEc:eee:phsmap:v:386:y:2007:i:1:p:135-154
    DOI: 10.1016/j.physa.2007.07.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107008199
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.07.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Carbone & J. A. Hertz & G. Kaniadakis & M. Lissia, 2006. "Modern Problems in Complexity," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:386:y:2007:i:1:p:135-154. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.