IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v385y2007i2p407-420.html
   My bibliography  Save this article

Percolation thresholds of a group of anisotropic three-dimensional fracture networks

Author

Listed:
  • Khamforoush, M.
  • Shams, K.

Abstract

Percolation thresholds (average number of connections per object) of two models of anisotropic three-dimensional (3D) fracture networks made of mono-disperse hexagons have been calculated numerically. The first model is when the fracture networks are comprised of two groups of fractures that are distributed in an anisotropic manner about two orthogonal mean directions, i.e., Z- and X-directions. We call this model bipolar anisotropic fracture network (BFN). The second model is when three groups of fractures are distributed about three orthogonal mean directions, that is Z-, X-, and Y-directions. In this model three families of fractures about three orthogonal mean directions are oriented in 3D space. We call this model tripolar anisotropic fracture network (TFN). The finite-size scaling method is used to predict the infinite percolation thresholds. The effect of anisotropicity on percolation thresholds in X-, Y-, and Z-directions is investigated. We have revealed that as the anisotropicity of networks increases, the percolation thresholds in X-, Y-, and Z-directions span the range of 2.3 to 2.0, where 2.3 and 2.0 are extremums of percolation thresholds for isotropic and non-isotropic orthogonal fracture networks, respectively.

Suggested Citation

  • Khamforoush, M. & Shams, K., 2007. "Percolation thresholds of a group of anisotropic three-dimensional fracture networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 407-420.
  • Handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:407-420
    DOI: 10.1016/j.physa.2007.07.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107007868
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.07.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeghnejad, S. & Masihi, M. & King, P.R., 2013. "Dependency of percolation critical exponents on the exponent of power law size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6189-6197.
    2. Yin, Tingchang & Man, Teng & Galindo-Torres, Sergio Andres, 2022. "Universal scaling solution for the connectivity of discrete fracture networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:407-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.