IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v385y2007i1p9-24.html
   My bibliography  Save this article

Kinetic theory of colloid thermodiffusion

Author

Listed:
  • Bringuier, E.
  • Bourdon, A.

Abstract

The Kramers’ equation of Brownian motion is applied to investigate the motion of a colloidal particle in a medium subjected to a temperature gradient. The equation is generalized in two ways. First, a chemical force is included in order to account for the non-ideality of the colloidal solution, in the thermodynamic sense. Second, the local disequilibrium of the medium gives rise to a force proportional to the temperature gradient, known as the thermophoretic force in the physics of gases. It is found that the latter force dominates in a rarefied gas, while the chemical force is a good candidate in liquid solutions. The description of the cross-over regime is still unsatisfactory. Next, given the force undergone by a colloidal particle, regardless of its physicochemical origin(s), we determine the velocity response. It is demonstrated that the velocity is not proportional to the applied force, in variance with the Stokes’ law of viscous drag invoked in many works and valid in thermally homogeneous media. An additional effective force tends to drive the particle toward places of higher mobility; that effective force is also proportional to the temperature gradient and can be of the same order of magnitude as the applied force. This conclusion is reached in two different ways, using either a transport equation or statistical-dynamical relations akin to the Ehrenfest theorem in quantum dynamics. Finally, the theoretical formula for the Soret coefficient shows that it is neither proportional to the velocity nor to the force.

Suggested Citation

  • Bringuier, E. & Bourdon, A., 2007. "Kinetic theory of colloid thermodiffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 9-24.
  • Handle: RePEc:eee:phsmap:v:385:y:2007:i:1:p:9-24
    DOI: 10.1016/j.physa.2007.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710700636X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bringuier, E., 2010. "Scaling theory of polymer thermodiffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4545-4551.
    2. Bringuier, E., 2011. "Gauge-invariant approach to thermodiffusion in a liquid binary mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1861-1875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:385:y:2007:i:1:p:9-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.