IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v384y2007i2p241-258.html
   My bibliography  Save this article

A moment approach to non-Gaussian colored noise

Author

Listed:
  • Hasegawa, Hideo

Abstract

The Langevin system subjected to non-Gaussian colored noise has been discussed, by using the second-order moment approach with two kinds of models for generating the noise. We have derived the effective differential equation (DE) for a variable x, from which the stationary probability distribution P(x) has been calculated with the use of the Fokker–Planck equation. The result of P(x) calculated by the moment method is compared to several expressions obtained by different methods such as the universal colored noise approximation (UCNA) [Jung and Hänggi, Phys. Rev. A 35 (1987) 4464] and the functional-integral method. It has been shown that our P(x) is in good agreement with that of direct simulations (DSs). We have also discussed dynamical properties of the model with an external input, solving DEs in the moment method.

Suggested Citation

  • Hasegawa, Hideo, 2007. "A moment approach to non-Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 241-258.
  • Handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:241-258
    DOI: 10.1016/j.physa.2007.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107006231
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rytis Kazakeviv{c}ius & Aleksejus Kononovicius, 2023. "Anomalous diffusion and long-range memory in the scaled voter model," Papers 2301.08088, arXiv.org, revised Feb 2023.
    2. Zhang, Huiqing & Xu, Wei & Xu, Yong, 2009. "The study on a stochastic system with non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 781-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:241-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.