IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v383y2007i2p351-371.html
   My bibliography  Save this article

First-order transition features of the triangular Ising model with nearest- and next-nearest-neighbor antiferromagnetic interactions

Author

Listed:
  • Malakis, A.
  • Fytas, N.G.
  • Kalozoumis, P.

Abstract

We implement a new and accurate numerical entropic scheme to investigate the first-order transition features of the triangular Ising model with nearest-neighbor (Jnn) and next-nearest-neighbor (Jnnn) antiferromagnetic interactions in ratio R=Jnn/Jnnn=1. Important aspects of the existing theories of first-order transitions are briefly reviewed, tested on this model, and compared with previous work on the Potts model. Using lattices with linear sizes L=30,40,…,100,120,140,160,200,240,360 and 480 we estimate the thermal characteristics of the present weak first-order transition. Our results improve the original estimates of Rastelli et al. and verify all the generally accepted predictions of the finite-size scaling theory of first-order transitions, including transition point shifts, thermal, and magnetic anomalies. However, two of our findings are not compatible with current phenomenological expectations. The behavior of transition points, derived from the number-of-phases parameter, is not in accordance with the theoretically conjectured exponentially small shift behavior and the well-known double Gaussian approximation does not correctly describe higher correction terms of the energy cumulants. It is argued that this discrepancy has its origin in the commonly neglected contributions from domain wall corrections.

Suggested Citation

  • Malakis, A. & Fytas, N.G. & Kalozoumis, P., 2007. "First-order transition features of the triangular Ising model with nearest- and next-nearest-neighbor antiferromagnetic interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 351-371.
  • Handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:351-371
    DOI: 10.1016/j.physa.2007.04.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107004335
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.04.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:351-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.