IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v383y2007i2p209-231.html
   My bibliography  Save this article

Locally ordered regions in the phase transition in the systems with a finite-range correlated quenched disorder

Author

Listed:
  • Wu, Xintian

Abstract

The locally ordered regions (LOR) in the phase transition in disordered systems are studied. There are two parts in this paper. One part is to report our numerical results on the one-dimensional saddle point equation of the Ginzburg–Landau Hamiltonian with random temperature in the presence of an ordering field. The disordered system is modelled as a lattice, on which each cell has a local reduced temperature. The random part of the local reduced temperature is distributed in the Gaussian form. The one-dimensional saddle point equation is solved numerically. The average, the fluctuation and the correlation length of the solution are calculated. The scaling relations for these quantities with the temperature, the ordering field and the disorder strength are derived. The numerical data are fitted with the scaling relations well. Another part is to discuss qualitatively the phase diagram of the finite-range correlated disordered systems. There are two proposed classes for the phase transition in connection with the LOR. One class is described by the percolative scenario, in which the phase transition is inhomogeneous. In the percolative scenario the percolation of the LOR dominates the phase transition. In another class, the phase transition is homogeneous, and can be described by the renormalization group (RG) with replica symmetry breaking (RSB). In the RG with RSB, there is nothing to do with the percolation of LOR. We shall show that these two theories, which seem contradictory, may describe two parts of the whole phase diagram. Whether the phase transition is homogeneous or inhomogeneous depends on the interaction between the LOR. If the interaction between the LOR is strong enough, the phase transition is percolative and inhomogeneous. If the interaction between the LOR is weak, the phase transition is homogeneous. The interaction between the LOR is discussed with the numerical solution on the saddle point equation.

Suggested Citation

  • Wu, Xintian, 2007. "Locally ordered regions in the phase transition in the systems with a finite-range correlated quenched disorder," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 209-231.
  • Handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:209-231
    DOI: 10.1016/j.physa.2007.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107005225
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:209-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.