IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v379y2007i2p559-568.html
   My bibliography  Save this article

First order phase transitions of the Potts model in fractal dimensions

Author

Listed:
  • Monceau, Pascal

Abstract

The phase diagram of the q-state Potts model in fractal dimensions is studied with the help of Wang–Landau Monte Carlo simulations on Sierpinski and Menger fractal structures. A particular attention is paid to first order transitions just above the border separating the second order phase transition regime from the first order one. Although the translation invariance is strongly broken in deterministic fractals, evidence is given that such a deviation from the translational symmetry is not able to induce second order transitions for large values of q when the dimension lies between 1.9746 and 3. Moreover, the occurrence of second order transitions for very large values of q in the case of hierarchically weakly connected systems, that is when the fractal dimension is significantly smaller than 2, is pointed out. At last, the evolution of first order physical averages such as the latent heats and the interfacial free energies with the space dimensionality and the number of spin states is discussed.

Suggested Citation

  • Monceau, Pascal, 2007. "First order phase transitions of the Potts model in fractal dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 559-568.
  • Handle: RePEc:eee:phsmap:v:379:y:2007:i:2:p:559-568
    DOI: 10.1016/j.physa.2007.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107000891
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:379:y:2007:i:2:p:559-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.