IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v379y2007i2p465-470.html
   My bibliography  Save this article

Long-range memory elementary 1D cellular automata: Dynamics and nonextensivity

Author

Listed:
  • Rohlf, Thimo
  • Tsallis, Constantino

Abstract

We numerically study the dynamics of elementary 1D cellular automata (CA), where the binary state σi(t)∈{0,1} of a cell i does not only depend on the states in its local neighborhood at time t-1, but also on the memory of its own past states σi(t-2),σi(t-3),…,σi(t-τ),… . We assume that the weight of this memory decays proportionally to τ-α, with α⩾0 (the limit α→∞ corresponds to the usual CA). Since the memory function is summable for α>1 and nonsummable for 0⩽α⩽1, we expect pronounced changes of the dynamical behavior near α=1. This is precisely what our simulations exhibit, particularly for the time evolution of the Hamming distance H of initially close trajectories. We typically expect the asymptotic behavior H(t)∝t1/(1-q), where q is the entropic index associated with nonextensive statistical mechanics. In all cases, the function q(α) exhibits a sensible change at α≃1. We focus on the class II rules 61, 99 and 111. For rule 61, q=0 for 0⩽α⩽αc≃1.3, and q<0 for α>αc, whereas the opposite behavior is found for rule 111. For rule 99, the effect of the long-range memory on the spread of damage is quite dramatic. These facts point at a rich dynamics intimately linked to the interplay of local lookup rules and the range of the memory. Finite size scaling studies varying system size N indicate that the range of the power-law regime for H(t) typically diverges ∝Nz with 0⩽z⩽1.

Suggested Citation

  • Rohlf, Thimo & Tsallis, Constantino, 2007. "Long-range memory elementary 1D cellular automata: Dynamics and nonextensivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 465-470.
  • Handle: RePEc:eee:phsmap:v:379:y:2007:i:2:p:465-470
    DOI: 10.1016/j.physa.2007.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107001288
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papapetrou, M. & Kugiumtzis, D., 2020. "Tsallis conditional mutual information in investigating long range correlation in symbol sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:379:y:2007:i:2:p:465-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.