IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v379y2007i1p250-262.html
   My bibliography  Save this article

A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition

Author

Listed:
  • Weifeng, Yuan
  • Kang Hai, Tan

Abstract

A cellular automata (CA) model, which adopts the findings of tenability analysis, is proposed to simulate the evacuation from a smoke-filled room. Two algorithms, viz., direct algorithm and indirect algorithm, are used to model the behavior of a crowd consisting of people with different movement velocities. In the indirect algorithm, the movement velocity is related to probability so that the CPU time is greatly reduced. Another novelty is that an experimental formula for estimating the survival duration when exposed to constant concentration of toxic gases in a static environment is extended to one that involves varying degree of toxic gases. This has been incorporated into the CA model.

Suggested Citation

  • Weifeng, Yuan & Kang Hai, Tan, 2007. "A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 250-262.
  • Handle: RePEc:eee:phsmap:v:379:y:2007:i:1:p:250-262
    DOI: 10.1016/j.physa.2006.12.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107000295
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.12.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    2. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    3. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    4. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    5. Wang, Li & Liu, Mao & Meng, Bo, 2013. "Incorporating topography in a cellular automata model to simulate residents evacuation in a mountain area in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 520-528.
    6. Fu, Zhijian & Luo, Lin & Yang, Yue & Zhuang, Yifan & Zhang, Peitong & Yang, Lizhong & Yang, Hongtai & Ma, Jian & Zhu, Kongjin & Li, Yanlai, 2016. "Effect of speed matching on fundamental diagram of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 31-42.
    7. Luo, Lin & Liu, Xiaobo & Fu, Zhijian & Ma, Jian & Liu, Fanxiao, 2020. "Modeling following behavior and right-side-preference in multidirectional pedestrian flows by modified FFCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Zhang, Dezhen & Huang, Gaoyue & Ji, Chengtao & Liu, Huiying & Tang, Ying, 2021. "Pedestrian evacuation modeling and simulation in multi-exit scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    9. Zhou, Xuemei & Hu, Jingjie & Ji, Xiangfeng & Xiao, Xiongziyan, 2019. "Cellular automaton simulation of pedestrian flow considering vision and multi-velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 982-992.
    10. Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:379:y:2007:i:1:p:250-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.