IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v379y2007i1p179-187.html
   My bibliography  Save this article

Complexity analysis of the stock market

Author

Listed:
  • Park, Joongwoo Brian
  • Won Lee, Jeong
  • Yang, Jae-Suk
  • Jo, Hang-Hyun
  • Moon, Hie-Tae

Abstract

We study the complexity of the stock market by constructing ε-machines of Standard and Poor's 500 index from February 1983 to April 2006 and by measuring the statistical complexities. It is found that both the statistical complexity and the number of causal states of constructed ε-machines have decreased for last 20 years and that the average memory length needed to predict the future optimally has become shorter. These results support that the information is delivered to the economic agents and applied to the market prices more rapidly in year 2006 than in year 1983.

Suggested Citation

  • Park, Joongwoo Brian & Won Lee, Jeong & Yang, Jae-Suk & Jo, Hang-Hyun & Moon, Hie-Tae, 2007. "Complexity analysis of the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 179-187.
  • Handle: RePEc:eee:phsmap:v:379:y:2007:i:1:p:179-187
    DOI: 10.1016/j.physa.2006.12.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107000271
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.12.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jizba, Petr & Korbel, Jan, 2014. "Multifractal diffusion entropy analysis: Optimal bin width of probability histograms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 438-458.
    2. Jinkyu Kim & Gunn Kim & Sungbae An & Young-Kyun Kwon & Sungroh Yoon, 2013. "Entropy-Based Analysis and Bioinformatics-Inspired Integration of Global Economic Information Transfer," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
    3. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    4. Petr Jizba & Jan Korbel, 2014. "Multifractal Diffusion Entropy Analysis: Optimal Bin Width of Probability Histograms," Papers 1401.3316, arXiv.org, revised Mar 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:379:y:2007:i:1:p:179-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.