IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v375y2007i1p355-364.html
   My bibliography  Save this article

Evolving model of weighted networks inspired by scientific collaboration networks

Author

Listed:
  • Li, Menghui
  • Wu, Jinshan
  • Wang, Dahui
  • Zhou, Tao
  • Di, Zengru
  • Fan, Ying

Abstract

Inspired by scientific collaboration networks (SCN), especially our empirical analysis of econophysicists network, an evolutionary model for weighted networks is proposed. Besides a new vertex added in at every time step, old vertices can also attempt to build up new links, or to reconnect the existing links. The number of connections repeated between two nodes is converted into the weight of the link. This provides a natural way for the evolution of link weight. The path-dependent preferential attachment mechanism with local information is also introduced. It increases the clustering coefficient of the network significantly. The model shows the scale-free phenomena in degree and vertex weight distribution. It also gives well qualitatively consistent behavior with the empirical results.

Suggested Citation

  • Li, Menghui & Wu, Jinshan & Wang, Dahui & Zhou, Tao & Di, Zengru & Fan, Ying, 2007. "Evolving model of weighted networks inspired by scientific collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 355-364.
  • Handle: RePEc:eee:phsmap:v:375:y:2007:i:1:p:355-364
    DOI: 10.1016/j.physa.2006.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106008806
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Fronzetti Colladon & Ciriaco Andrea D’Angelo & Peter A. Gloor, 2020. "Predicting the future success of scientific publications through social network and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 357-377, July.
    2. Türker, İlker & Çavuşoğlu, Abdullah, 2016. "Detailing the co-authorship networks in degree coupling, edge weight and academic age perspective," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 386-392.
    3. Stanislaw Drozdz & Andrzej Kulig & Jaroslaw Kwapien & Artur Niewiarowski & Marek Stanuszek, 2017. "Hierarchical organization of H. Eugene Stanley scientific collaboration community in weighted network representation," Papers 1705.06208, arXiv.org, revised Oct 2017.
    4. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    5. Huang, He & Yan, Zhijun & Pan, Yaohui, 2014. "Measuring edge importance to improve immunization performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 532-540.
    6. Chen, Xue & Jiao, Pengfei & Yu, Yandong & Li, Xiaoming & Tang, Minghu, 2019. "Toward link predictability of bipartite networks based on structural enhancement and structural perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C), pages 1-1.
    7. Zhang, Xin-Jie & Tang, Yong & Xiong, Jason & Wang, Wei-Jia & Zhang, Yi-Cheng, 2020. "Ranking game on networks: The evolution of hierarchical society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Sousa, R.A. & Lula-Rocha, V.N.A. & Toutain, T. & Rosário, R.S. & Cambui, E.C.B. & Miranda, J.G.V., 2020. "Preferential interaction networks: A dynamic model for brain synchronization networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:375:y:2007:i:1:p:355-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.