IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v375y2007i1p212-220.html
   My bibliography  Save this article

A metric measure for weight matrices of variable lengths—with applications to clustering and classification of hidden Markov models

Author

Listed:
  • Yu, Yi-Kuo

Abstract

We construct a metric measure among weight matrices that are commonly used in non-interacting statistical physics systems, computational biology problems, as well as in general applications such as hidden Markov models. The metric distance between two weight matrices is obtained via aligning the matrices and thus can be evaluated by dynamic programming. Capable of allowing reverse complements in distance evaluation, this metric accommodates both gapless and gapped alignments between two weight matrices. The distance statistics among random motifs is also studied. We find that the average square distance and its standard error grow with different powers of motif length, and the normalized square distance follows a Gaussian distribution for large motif lengths.

Suggested Citation

  • Yu, Yi-Kuo, 2007. "A metric measure for weight matrices of variable lengths—with applications to clustering and classification of hidden Markov models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 212-220.
  • Handle: RePEc:eee:phsmap:v:375:y:2007:i:1:p:212-220
    DOI: 10.1016/j.physa.2006.08.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106009502
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.08.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:375:y:2007:i:1:p:212-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.