IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v375y2007i1p1-17.html
   My bibliography  Save this article

Pore network modeling of two-phase flow in a liquid-(disconnected) gas system

Author

Listed:
  • Bravo, Maria C.
  • Araujo, Mariela
  • Lago, Marcelo E.

Abstract

The appropriate description of two-phase flow in some systems requires a detailed analysis of the fundamental equations of flow and transport including momentum transfer between fluid phases. In the particular case of two-phase flow of oil and gas through porous media, when the gas phase is present as disconnected bubbles, there are inconsistencies in calculated flow properties derived by using the conventional Darcean description. In a two-phase system, the motion of one fluid phase may induce significant changes in the mobility of the second phase, as known from the generalized transport equations derived by Whitaker and Kalaydjian. The relevance of such coupling coefficients with respect to the conventional relative permeability term in two-phase Darcean flow is evaluated in this work for an oil-(disconnected) gas system. The study was performed using a new Pore Network Simulator specially designed for this case. Results considering both, Darcy's equation and generalized flow equations suggest that the four transport coefficients (effective permeabilities and coupling coefficients) are needed for a proper description of the macroscopic flow in a liquid-disconnected gas system.

Suggested Citation

  • Bravo, Maria C. & Araujo, Mariela & Lago, Marcelo E., 2007. "Pore network modeling of two-phase flow in a liquid-(disconnected) gas system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 1-17.
  • Handle: RePEc:eee:phsmap:v:375:y:2007:i:1:p:1-17
    DOI: 10.1016/j.physa.2006.08.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106008934
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.08.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junwei Su & Le Wang & Zhaolin Gu & Yunwei Zhang & Chungang Chen, 2018. "Advances in Pore-Scale Simulation of Oil Reservoirs," Energies, MDPI, vol. 11(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:375:y:2007:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.