IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v373y2007icp593-602.html
   My bibliography  Save this article

Is the expression H=1/(3-q) valid for real financial data?

Author

Listed:
  • Cajueiro, Daniel O.
  • Tabak, Benjamin M.

Abstract

Non-extensive thermodynamics is one of the most intriguing physics new frontiers. A large number of researchers have been successfully finding connections between the new concepts introduced by this new field and other complex systems already presented. In particular, Borland [Phys. Rev. E 57 (1998) 6634–6642] has introduced a very interesting relation between the entropic index q that arises in the non-extensive entropy and the well-known Hurst exponent H used to measure long-range dependence in complex systems. In this paper, we provide statistical support to Borland results and test the validity of these results in real financial data.

Suggested Citation

  • Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Is the expression H=1/(3-q) valid for real financial data?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 593-602.
  • Handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:593-602
    DOI: 10.1016/j.physa.2006.05.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106006534
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.05.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    2. P. Mattedi, Adriana & M. Ramos, Fernando & Rosa, Reinaldo R. & Mantegna, Rosario N., 2004. "Value-at-risk and Tsallis statistics: risk analysis of the aerospace sector," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 554-561.
    3. Cajueiro, Daniel O. & Tabak, Benjamin M., 2005. "The rescaled variance statistic and the determination of the Hurst exponent," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(3), pages 172-179.
    4. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    5. Cajueiro, Daniel O., 2006. "A note on the relevance of the q-exponential function in the context of intertemporal choices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 385-388.
    6. GIRAITIS, Liudas & KOKOSZKA, Piotr & LEIPUS, Remigijus & TEYSSIÈRE, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," LIDAM Reprints CORE 1594, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pakrashi, Vikram & Kelly, Joe & Harkin, Julie & Farrell, Aidan, 2013. "Hurst exponent footprints from activities on a large structural system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1803-1817.
    2. Mulligan, Robert F., 2017. "The multifractal character of capacity utilization over the business cycle: An application of Hurst signature analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 147-152.
    3. Mulligan, Robert F., 2014. "Multifractality of sectoral price indices: Hurst signature analysis of Cantillon effects in disequilibrium factor markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 252-264.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cajueiro, Daniel O. & Tabak, Benjamin M., 2010. "Fluctuation dynamics in US interest rates and the role of monetary policy," Finance Research Letters, Elsevier, vol. 7(3), pages 163-169, September.
    2. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for long-range dependence in world stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 918-927.
    3. Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
    4. Ding, Liang & Luo, Yi & Lin, Yan & Huang, Yirong, 2021. "Revisiting the relations between Hurst exponent and fractional differencing parameter for long memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    5. Li, Wen & Yu, Cindy & Carriquiry, Alicia & Kliemann, Wolfgang, 2011. "The asymptotic behavior of the R/S statistic for fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 83-91, January.
    6. Benjamin Rainer Auer, 2018. "Are standard asset pricing factors long-range dependent?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(1), pages 66-88, January.
    7. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Time-varying long-range dependence in US interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 360-367.
    8. He, Ling-Yun & Qian, Wen-Bin, 2012. "A Monte Carlo simulation to the performance of the R/S and V/S methods—Statistical revisit and real world application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3770-3782.
    9. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    10. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    11. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    12. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    13. Doyle, John R. & Chen, Catherine Huirong, 2012. "A multidimensional classification of market anomalies: Evidence from 76 price indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1237-1257.
    14. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    15. Gennadi Gromykov & Mohamedou Ould Haye & Anne Philippe, 2018. "A frequency-domain test for long range dependence," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 513-526, October.
    16. Marinko Škare & Daniel Tomic, 2014. "Examining the Link between Innovation, Productivity and Growth: a Global View," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 606-606, May.
    17. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    18. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    19. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    20. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:593-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.