IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v373y2007icp445-454.html
   My bibliography  Save this article

New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion

Author

Listed:
  • Nagy, Máté
  • Daruka, István
  • Vicsek, Tamás

Abstract

In this paper we present our detailed investigations on the nature of the phase transition in the scalar noise model (SNM) of collective motion. Our results confirm the original findings of Vicsek et al. [Phys. Rev. Lett. 75 (1995) 1226] that the disorder–order transition in the SNM is a continuous, second order phase transition for small particle velocities (v⩽0.1). However, for large velocities (v⩾0.3) we find a strong anisotropy in the particle diffusion in contrast with the isotropic diffusion for small velocities. The interplay between the anisotropic diffusion and the periodic boundary conditions leads to an artificial symmetry breaking of the solutions (directionally quantized density waves) and a consequent first order transition like behavior. Thus, it is not possible to draw any conclusion about the physical behavior in the large particle velocity regime of the SNM.

Suggested Citation

  • Nagy, Máté & Daruka, István & Vicsek, Tamás, 2007. "New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 445-454.
  • Handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:445-454
    DOI: 10.1016/j.physa.2006.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106006510
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chepizhko, Oleksandr & Kulinskii, Vladimir, 2014. "The hydrodynamic description for the system of self-propelled particles: Ideal Viscek fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 493-502.
    2. Chen, Zhuo & Gao, Jianxi & Cai, Yunze & Xu, Xiaoming, 2011. "Evolution of cooperation among mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1615-1622.
    3. García Cantú Ros, A. & Antonopoulos, Ch.G. & Basios, V., 2011. "Emergence of coherent motion in aggregates of motile coupled maps," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 574-586.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:445-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.