IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v373y2007icp433-438.html
   My bibliography  Save this article

Collapse transition of self-avoiding trails on the square lattice

Author

Listed:
  • Owczarek, A.L.
  • Prellberg, T.

Abstract

The collapse transition of an isolated polymer has been modelled by many different approaches, including lattice models based on self-avoiding walks and self-avoiding trails. In two dimensions, previous simulations of kinetic growth trails, which map to a particular temperature of interacting self-avoiding trails, showed markedly different behaviour for what was argued to be the collapse transition than that which has been verified for models based of self-avoiding walks. On the other hand, it has been argued that kinetic growth trails represent a special simulation that does not give the correct picture of the standard equilibrium model. In this work we simulate the standard equilibrium interacting self-avoiding trail model on the square lattice up to lengths over 2,000,000 steps and show that the results of the kinetic growth simulations are, in fact, entirely in accord with standard simulations of the temperature dependent model. In this way we verify that the collapse transition of interacting self-avoiding walks and trails are indeed in different universality classes in two dimensions.

Suggested Citation

  • Owczarek, A.L. & Prellberg, T., 2007. "Collapse transition of self-avoiding trails on the square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 433-438.
  • Handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:433-438
    DOI: 10.1016/j.physa.2006.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106007217
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Interacting self-avoiding trails;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:433-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.