IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v372y2006i1p124-131.html
   My bibliography  Save this article

Ecological consequences of traffic organisation in ant societies

Author

Listed:
  • Burd, Martin

Abstract

Many species of ants engage in social foraging in which traffic develops over pathways defined by pheromones or physical roads cleared through debris. Worker ants from the same colony have a common underlying evolutionary interest in their collective performance. Thus, ant traffic makes an interesting comparison to other kinds of cellular or organismal traffic composed of elements with varying degrees of shared or disparate goals. Recent studies have revealed how small-scale interactions among ants amplify to create large-scale traffic structure, such as segregation of counterflows. However, much less is known about the ecological costs and benefits of different kinds of traffic organization. The common assumption that maximum traffic flux provides maximum ecological benefit needs closer scrutiny. Ant traffic provides a potentially useful model system for experimental study of crowd panics, and for assessing the role of transport networks in creating scaling relationships between the size and activity rates of the entities they serve.

Suggested Citation

  • Burd, Martin, 2006. "Ecological consequences of traffic organisation in ant societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 124-131.
  • Handle: RePEc:eee:phsmap:v:372:y:2006:i:1:p:124-131
    DOI: 10.1016/j.physa.2006.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710600584X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan-Kai Chung & Chung-Chi Lin, 2017. "Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-12, March.
    2. Shiwakoti, Nirajan & Sarvi, Majid & Rose, Geoff & Burd, Martin, 2011. "Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1433-1449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:372:y:2006:i:1:p:124-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.