IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v370y2006i2p869-876.html
   My bibliography  Save this article

Modelling of weighted evolving networks with community structures

Author

Listed:
  • Li, Chunguang
  • Chen, Guanrong

Abstract

Many social and biological networks consist of communities–groups of nodes within which links are dense but among which links are sparse. It turns out that most of these networks are best described by weighted networks, whose properties and dynamics depend not only on their structures but also on the link weights among their nodes. Recently, there are considerable interests in the study of properties as well as modelling of such networks with community structures. To our knowledge, however, no study of any weighted network model with such a community structure has been presented in the literature to date. In this paper, we propose a weighted evolving network model with a community structure. The new network model is based on the inner-community and inter-community preferential attachments and preferential strengthening mechanism. Simulation results indicate that this network model indeed reflect the intrinsic community structure, with various power-law distributions of the node degrees, link weights, and node strengths.

Suggested Citation

  • Li, Chunguang & Chen, Guanrong, 2006. "Modelling of weighted evolving networks with community structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 869-876.
  • Handle: RePEc:eee:phsmap:v:370:y:2006:i:2:p:869-876
    DOI: 10.1016/j.physa.2006.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106002901
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Zhi, Danyue & Song, Dongdong & Chen, Yan & de Bok, Michiel & Tavasszy, Lóránt A. & Gao, Ziyou, 2023. "Uncovering and modeling the hierarchical organization of urban heavy truck flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Sousa, R.A. & Lula-Rocha, V.N.A. & Toutain, T. & Rosário, R.S. & Cambui, E.C.B. & Miranda, J.G.V., 2020. "Preferential interaction networks: A dynamic model for brain synchronization networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Sho Tsugawa & Yukihiro Matsumoto & Hiroyuki Ohsaki, 2015. "On the robustness of centrality measures against link weight quantization in social networks," Computational and Mathematical Organization Theory, Springer, vol. 21(3), pages 318-339, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:370:y:2006:i:2:p:869-876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.