IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v369y2006i1p29-70.html
   My bibliography  Save this article

Theoretical studies of self-organized criticality

Author

Listed:
  • Dhar, Deepak

Abstract

These notes are intended to provide a pedagogical introduction to the abelian sandpile model of self-organized criticality, and its related models. The abelian group, the algebra of particle addition operators, the burning test for recurrent states, equivalence to the spanning trees problem are described. The exact solution of the directed version of the model in any dimension is explained. The model's equivalence to Scheidegger's model of river basins, Takayasu's aggregation model and the voter model is discussed. For the undirected case, the solution for one-dimensional lattices and the Bethe lattice is briefly described. Known results about the two dimensional case are summarized. Generalization to the abelian distributed processors model is discussed. Time-dependent properties and the universality of critical behavior in sandpiles are briefly discussed. I conclude by listing some still-unsolved problems.

Suggested Citation

  • Dhar, Deepak, 2006. "Theoretical studies of self-organized criticality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(1), pages 29-70.
  • Handle: RePEc:eee:phsmap:v:369:y:2006:i:1:p:29-70
    DOI: 10.1016/j.physa.2006.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106004006
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kévin Perrot & Éric Rémila, 2015. "Emergence on Decreasing Sandpile Models," Post-Print halshs-01212069, HAL.
    2. Wu, Xiaoxia & Zhang, Lianzhu & Chen, Haiyan, 2017. "Spanning trees and recurrent configurations of a graph," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 25-30.
    3. Antal A. Járai & Nicolás Werning, 2014. "Minimal Configurations and Sandpile Measures," Journal of Theoretical Probability, Springer, vol. 27(1), pages 153-167, March.
    4. Ding, Jin & Lu, Yong-Zai & Chu, Jian, 2013. "Studies on controllability of directed networks with extremal optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6603-6615.
    5. Shapoval, A.B. & Shnirman, M.G., 2012. "The BTW mechanism on a self-similar image of a square: A path to unexpected exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 15-20.
    6. Antal A. Járai & Minwei Sun, 2021. "Asymptotic Height Distribution in High-Dimensional Sandpiles," Journal of Theoretical Probability, Springer, vol. 34(1), pages 349-362, March.
    7. Sokolov, Andrey & Melatos, Andrew & Kieu, Tien & Webster, Rachel, 2015. "Memory on multiple time-scales in an Abelian sandpile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 295-301.
    8. Bosiljka Tadić & Roderick Melnik, 2020. "Modeling latent infection transmissions through biosocial stochastic dynamics," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:369:y:2006:i:1:p:29-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.